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We can define the vertex function Vv
ia by 

= — / / d4ud*u'Sa(x-u) 

giaT^(u-z; z-u')Sa(u'-y). (5,5) 

Taking the divergence and then the Fourier trans­
form of this equation, we obtain the Ward-Takahashi 
identity11'12 for the field Ai interacting with the cur­
rent Ja: 

5.-1(#)-5.-»( ?)=(#-g) ,r ,<«(M), (s.6) 

and thus, 
dSa~Kp)/dpv=TvHp,p)- (5-7) 

The renormalized functions Tv
ia, Sa are given by 

Sa = ZicT^Sa, (5.8) 

gi^^^Z^R-h^Y^. (5.9) 
Therefore, 

Zr\aYv^ {f,p) = Z2a-1dStr
1/dpv, (5.10) 

but 

= (l+Lia)yv^(2-Zlia)yP (5.11) 
and 

dS<T1/dpv(p'i^MJ)=(l~Bia)y^ (2~Z2a)T„; (5.12) 
11Y. Takahashi, Nuovo Cimento 6, 371 (1957). 
12 J. Bernstein, M. Gell-Mann, and L. Michel, Nuovo Cimento 

16, 560 (1960). 

A RECENT paper1,2 has shown, using the method of 
small perturbations, that gaseous masses may 

exhibit a radial instability in the framework of general 
relativity. When discussing instability in Newtonian 
physics, one sometimes uses an energy method to 

* Sponsored by the Mathematics Research Center, U. S. Army, 
Madison, Wisconsin, under Contract No. DA-11-022-ORD-2059. 

1 S. Chandrasekhar, Phys. Rev. Letters 12, 114 (1964). 
2 S. Chandrasekhar, Phys. Rev. Letters 12, 437 (1964). 

therefore, 

if Mi=0, ZXia=Z^. (5.13) 

Then, from Eqs. (3.5) and (5.2), we deduce that 

gi«=#ngi«, a = l , • • • , # . (5.14) 
This shows that the electric charges of all particles are 
changed by the same factor when renormalized, as we 
asserted. 

CONCLUSION 

We have shown that when mixing occurs, the re­
normalized fields must be taken as linear combinations 
of the bare fields. In order to calculate matrix elements, 
observed masses and coupling constants are used, but 
mixing parameters are not needed. We use a propagator 
whose pole terms are diagonal, and subtract self-energy 
parts at each relevant mass in order to calculate it. 
To lowest order this method gives the same results as 
the prescription of Feldman and Matthews,1 and also 
calculates higher order corrections correctly. 

Finally we have shown that photon-vector-meson 
mixing still allows a zero bare mass for the photon, and 
that in such circumstances the electric charges of 
different particles are again renormalized by the same 
factor. 
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determine the point of instability, and it can be shown 
that in certain cases the methods are equivalent. For the 
case of a general relativistic fluid sphere with constant 
energy density and heat capacity, one can show that the 
two methods give exactly equivalent results at the limit 
where the radius is much greater than the Schwarzschild 
radius. The instability is assumed to occur when the 
binding energy of the system is at a maximum. 

The expression for the binding energy of a static, 
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The point of instability of a general relativistic fluid sphere is determined using the criterion that the point 
of instability occurs when the binding energy is at a maximum. The result is equivalent to the result obtained 
by the small-perturbation method when the radius is sufficiently large. 



G E N E R A L R E L A T I V I S T I C I N S T A B I L I T Y 

spherically symmetric fluid sphere is3,4 

B . E . = 4TT/ pmcW2r2dr S.E. = 4TT[ , 
Jo 
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TABLE I. The critical radius Rc in units of the Schwarzchild 
radius for various values of 0, for which the equivalent ratio of 
specific heats is given. 

Jo 
- 4 T T / ( T o 0 - T V - T V - Tz*)e^+vWrHr. (1) 

Jo 

The first term expresses the potential energy of the 
system and the last term the total energy of a system 
with a metric 

0 
0.290 
0.306 
0.645 
0.828 
0.923 
0.954 
1.000 

Ti 

1.384 
1.387 
1.461 
1.523 
1.579 
1.609 
1.667 

Rc/Ro 

9.0 
8.549 
4.0 
3.0 
2.7 
2.6 
2.465 

where 

2 7 = eo, Tl=Ti=Tx*=*-p, 

/>Ao= (y-yi)/(3yi-y), yi2= 1-qR2, 

M=4irc-2/ e0r
2dr 

(2) 

(3) 

Equation (5) may be integrated for the case 0= con­
stant. The requirement d B.E./di£=0, subject to the 
condition M= constant, then becomes 

^-1/2 sin-1^/2^ ( l „ l x ) ( l _ x ) - l / 2 + ( ! _ ! £ ) 

X (2/x)1/2(l-^)~1/2(l-9x/8)-1/2(24-34x+9x2) 
and 

The quantity eo is the energy density, pm the mass 
density, p the pressure, R the radius of the system, and 
k the gravitational constant. 

A gas sphere containing radiation and monatomic 
gas only would have an energy density 

C-• sin-1 (1-f*)(l--x)-1'21-15 {l-\x)(\~x)-v2 

-trWQS-Xlx^ur1* ,1/2 = 0, (6) 

eo=P«c2+3/>(l-/8)+|/ty, (4) 

where x=Ro/R and Ro=2kMc~2 (the Schwarzschild 
radius). 

Equation (5) reduces to 

where fi is ratio of particle pressure to total pressure. 
The use of Eqs. (2), (3), and (4) enables one to express 
the binding energy as 

B.E.= (3kM*/lQR)(p-19Ro/14H) (7) 

B.E.= .E. = 4TT( e£l-y-3(l-H3)(y-yi) 

X(3y1-j)-1]3;-V2^. (5) 
3 1 . Iben, Astrophys. J. 138, 4, 1090 (1963). 
4 L. Landau and E. Lifshitz, The Classical Theory of Fields 

(Pergamon Press, Inc., New York, 1962), 2nd ed., Sec. 100. 

for the case (RQ/R)<£,1. The point of instability occurs 
at Rc= 19i£o/7/2. An object which is nearly all radiation 
has5 @-~6(Ti—f), and the point of instability occurs at 
Re=19Ro/4:2(Ti—$), which is identical to the result 
obtained by the method of small perturbations.2 Values 
of the critical radius for various values of /3 using Eq. (6) 
are given in Table I. 

5 S. Chandrasekhar, An Introduction to the Study of Stellar 
Structure (University of Chicago Press, Chicago, 1939), p. 57. 


